Cho tam giác ABC vuông tại A có AB = a, AC = 2a. Gọi M là trung điểm của BC, điểm D thuộc AC sao cho

Cho tam giác ABC vuông tại A có AB = a, AC = 2a. Gọi M là trung điểm của BC, điểm D thuộc AC sao cho AD=a2. Chứng minh rằng BD vuông góc với AM.

Trả lời
Cho tam giác ABC vuông tại A có AB = a, AC = 2a. Gọi M là trung điểm của BC, điểm D thuộc AC sao cho (ảnh 1)

Xét tam giác ABC vuông tại A có:

AB ^ AC Û   AB.AC=0AB.AD=0(vì D thuộc AC)

Vì M là trung điểm của BC nên ta có AB+AC=2AM .

Lại có:  BD=ADAB (quy tắc ba điểm).

Khi đó ta có:  2AM.BD

=AB+ACADAB

=AB.ADAB2+AC.ADAC.AB

=0AB2+AC.AD.cos0°0

=a2+2a.a2=0.

Vậy AM.BD=0AMBDAMCD (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả