Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm. a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH. b) Chứng minh rằng: AB.cos B + AC.cos C = BC. c) Trên cạnh AC lấy điểm D
26
21/05/2024
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng: \(AB.\cos B + AC.\cos C = BC.\)
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng: \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)
Trả lời
Lời giải
a) ∆ABC vuông tại A, đường cao AH
\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{6^2} + {8^2}} = 10\;cm\)
Ta có:
\(\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5} \Rightarrow \widehat B = {53^ \circ } \Rightarrow \widehat C = {37^ \circ }\)
Có AH.BC = AB.AC (Hệ thức về cạnh và đường cao trong tam giác vuông)
\( \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{6.8}}{{10}} = 4,8\;cm\)
b) ∆HBA vuông tại H (AH ^ BC) Þ BH = AB.cos B
Tương tự: ∆HCA vuông tại H (AH ^ BC) Þ CH = AC.cos C
Mà BH + CH = BC Þ \(AB.\cos B + AC.\cos C = BC.\)
c) ∆ABC vuông tại A, đường cao AH
\( \Rightarrow \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\) (1)
Ta có: DE // AH (cùng vuông góc với BC)
\( \Rightarrow \frac{{DE}}{{AH}} = \frac{{CD}}{{AC}} = \frac{2}{3} \Rightarrow \frac{{D{E^2}}}{{A{H^2}}} = \frac{4}{9} \Rightarrow \frac{1}{{A{H^2}}} = \frac{4}{{9D{E^2}}}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)