Cho tam giác ABC vuông tại A (AB < AC). Vẽ tia phân giác Ax. Vẽ BD vuông góc với Ax tại D và CE vuông góc với Ax tại E. Gọi M là trung điểm của BC. Tính các góc của tam giác DME.

Cho tam giác ABC vuông tại A (AB < AC). Vẽ tia phân giác Ax. Vẽ BD vuông góc với Ax tại D và CE vuông góc với Ax tại E. Gọi M là trung điểm của BC. Tính các góc của tam giác DME.

Trả lời

Lời giải

Media VietJack

Xét ΔABC: \(\widehat A = 90^\circ \); M là trung điểm BC.

Suy ra AM = BM = CM.

Ax là tia phân giác \[\widehat {BAC}\] nên \[\widehat {BAD} = \widehat {CAE} = 45^\circ \].

Mà BD Ax, CE Ax nên ∆BAD và ∆CAE lần lượt vuông cân tại D và E.

Do đó DA = DB và EA = EC.

Ta có ΔAEM = ΔCEM (c.c.c)

Suy ra \[\widehat {AEM} = \widehat {CEM}\] (hai góc tương ứng)

EM là phân giác \[\widehat {AEC}\] \[\widehat {AEM} = \widehat {CEM} = \frac{{90^\circ }}{2} = 45^\circ \] hay \[\widehat {DEM} = 45^\circ \].

Ta có: \[\widehat {BDM} = \widehat {BDE} + \widehat {EDM} = 90^\circ + \widehat {EDM} \Rightarrow \widehat {ADM} = 90^\circ + \widehat {EDM}\].

Lại có: \[\widehat {ADM} + \widehat {EDM} = 180^\circ \] (hai góc kề bù).

Thay\[\widehat {ADM} = 90^\circ + \widehat {EDM}\], ta được:

\[90^\circ + \widehat {EDM} + \widehat {EDM} = 180^\circ \]

\[2\,\widehat {EDM} = 90^\circ \Rightarrow \widehat {EDM} = 45^\circ \].

Vậy ∆DME có \[\widehat {DEM} = 45^\circ \]; \[\widehat {EDM}\]  \[\widehat {DME} = 90^\circ \].

Câu hỏi cùng chủ đề

Xem tất cả