Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Trên tia HC lấy điểm D

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Trên tia HC lấy điểm D sao cho HD = HA. Từ điểm D, vẽ đường thẳng vuông góc với BC cắt AC ở E. Chứng minh rằng AE = AB.

Trả lời
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Trên tia HC lấy điểm D  (ảnh 1)

Tam giác AHD có:

HA = HD; \(\widehat {AHD} = 90^\circ \)

Do đó, tam giác AHD vuông cân

Do đó, \(\widehat {HDA} = 45^\circ \)

Tam giác CED và tam giác CBA có:

Góc \(\widehat C\) chung

\(\widehat D = \widehat A = 90^\circ \)

Do đó, tam giác CED đồng dạng với tam giác CBA (g.g)

\( \Rightarrow \frac{{CD}}{{CA}} = \frac{{CE}}{{CB}} \Rightarrow \frac{{CD}}{{CE}} = \frac{{CA}}{{CB}}\)

Xét tam giác CAD và tam giác CBE có:

\(\widehat C\) chung

\(\frac{{CD}}{{CE}} = \frac{{CA}}{{CB}}\)

Do đó, tam giác CAD đồng dạng với tam giác CBE (c.g.c)

Do đó, \(\widehat {BEC} = \widehat {ADC}\)

Ta có: \(\widehat {ADC} + \widehat {HDA} = 180^\circ \); \(\widehat {BEC} + \widehat {BEA} = 180^\circ \Rightarrow \widehat {BEC} = \widehat {ADC}\)

\( \Rightarrow \widehat {HDA} = \widehat {BEA}\)\(\widehat {HDA} = 45^\circ \)

\( \Rightarrow \widehat {BEA} = 45^\circ \)

Tam giác ABE có: \(\widehat A = 90^\circ ;\,\,\widehat {BEA} = 45^\circ \)

Do đó, tam giác ABE vuông cân

Do đó, AB = AE.

Câu hỏi cùng chủ đề

Xem tất cả