Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB.
46
05/05/2024
Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ MN có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P là bao nhiêu vectơ?
Trả lời
Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác ABC.
Suy ra
Lại có P là trung điểm của AB nên:
Từ (1) và (2) suy ra:
Vậy khi đó số vecto bằng mà có điểm đầu và cuối trùng với các điểm trên là: