1) Ta có: \(\widehat {BHE} = \widehat {BKE} = 90^\circ \)(vì EH vuông góc AB, EK vuông góc BC)
Xét tứ giác BHEK có: \(\widehat {BHE} + \widehat {BKE} = 90^\circ + 90^\circ = 180^\circ \)
Nên BHEK là tứ giác nội tiếp
2) Ta có: \(\widehat {BHE} + \widehat {EBH} = 90^\circ \)(do tam giác BHE vuông tại H)
\(\widehat {BAE} + \widehat {EBH} = 90^\circ \)(do tam giác ABE vuông tại E)
Nên: \(\widehat {BHE} = \widehat {BAE}\)
Mà \(\widehat {BHE} = \widehat {BKH}\)
Suy ra: \(\widehat {BAE} = \widehat {BKH}\)
Xét tam giác BHK và tam giác BCA có:
\(\widehat B\)chung
\(\widehat {BAE} = \widehat {BKH}\)
⇒ ∆BHK ∽ ∆BCA (g.g)
⇒ \(\frac{{BH}}{{BC}} = \frac{{BK}}{{BA}}\)
⇒ BH.BA = BK.BC
3) Gọi I’ là giao điểm của HK và EF
Xét tứ giác BFEC có: \(\widehat {BFC} = \widehat {BEC} = 90^\circ \)
Nên BFEC là tứ giác nội tiếp
Suy ra: \[\widehat {{B_1}} = \widehat {{F_1}}\](2 góc nội tiếp cùng chắn cung EC)
Ta có: EH // CF (cùng vuông góc AB)
Nên: \[\widehat {{E_1}} = \widehat {{F_1}}\](2 góc so le trong)
Suy ra: \[\widehat {{B_1}} = \widehat {{E_1}}\] (1)
Theo câu a tứ giác BHEK nội tiếp nên \[\widehat {{B_1}} = \widehat {{H_1}}\] (2 góc nội tiếp cùng chắn cung EK) (2)
Từ (1) và (2) suy ra: \[\widehat {{H_1}} = \widehat {{E_1}}\]
Suy ra: I'HE cân tại I' hay I'H = I'E (3)
Lại có: \[\widehat {{H_1}} + \widehat {{H_2}} = 90^\circ \]
\[\widehat {{F_2}} + \widehat {{E_1}} = 90^\circ \] (do tam giác HEF vuông tại H)
Nên: \[\widehat {{H_2}} = \widehat {{F_2}}\]hay tam giác I'HF cân tại I'
Suy ra: I'H = I'F (4)
Từ (3) và (4) suy ra: I'E = I'F hay I' là trung điểm EF
Suy ra: I' ≡ I nên I, H, K thẳng hàng.