Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) ∆ADB = ∆ADC. b) AD là tia phân giác của góc BAC và góc B = góc C. c) AD vuông góc với BC.
24
25/06/2024
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
Trả lời
Lời giải
a) Xét ∆ADB và ∆ADC, có:
AD là cạnh chung;
BD = CD (D là trung điểm BC);
AB = AC (giả thiết).
Do đó ∆ADB = ∆ADC (c.c.c).
b) Ta có ∆ADB = ∆ADC (kết quả câu a).
Suy ra \(\widehat {BAD} = \widehat {CAD}\) và \(\widehat {ABD} = \widehat {ACD}\) (các cặp góc tương ứng).
Vậy AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) Ta có ∆ADB = ∆ADC (kết quả câu a).
Suy ra \(\widehat {ADB} = \widehat {ADC}\) (cặp góc tương ứng).
Mà \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (cặp góc kề bù).
Khi đó \(\widehat {ADB} = \widehat {ADC} = 90^\circ \).
Vậy AD ⊥ BC.