Cho tam giác ABC có A’, B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto BC' = vecto C'A  = vecto A'B'. b) Tìm các vectơ bằng vecto B'C', vecto C'A'

Cho tam giác ABC có A’, B’, C’ lần lượt là trung điểm của BC, CA, AB.

a) Chứng minh \(\overrightarrow {BC'} = \overrightarrow {C'A} = \overrightarrow {A'B'} \).

b) Tìm các vectơ bằng \(\overrightarrow {B'C'} ,\,\overrightarrow {C'A'} \).

Trả lời

Lời giải

Media VietJack

a) Tam giác ABC có A’B’ là đường trung bình.

Suy ra A’B’ = BC’ = C’A.

\(\overrightarrow {BC'} ,\,\overrightarrow {C'A} ,\,\overrightarrow {A'B'} \) cùng phương với nhau.

Vậy \(\overrightarrow {BC'} = \overrightarrow {C'A} = \overrightarrow {A'B'} \).

b) Tương tự câu a, ta có \(\overrightarrow {A'B} = \overrightarrow {CA'} = \overrightarrow {B'C'} \)\(\overrightarrow {AB'} = \overrightarrow {B'C} = \overrightarrow {C'A'} \).

Câu hỏi cùng chủ đề

Xem tất cả