a. Xét tứ giác BMCE có 2 đường chéo
BC và ME cắt nhau tại trung điểm I của mỗi đường
⇒ Tứ giác BMCE là hình bình hành (1)
Vì ∆BAC cân tại B có M là trung điểm của AC ⇒ trung tuyến BM đồng thời là đồng thời là đường cao ⇒ ^BMC=90∘ (2)
Từ (1) và (2) ⇒ Tứ giác BMCE là hình chữ nhật.
b. Vì tứ giác BMCE là hình chữ nhật (cmt) ⇒ BE // MC
BE = MC; MC = MA ⇒ MA = BE
Có BE // MC ⇒ BE // AM (vì M ∈ AC)
Xét tứ giác ABEM có: {BE//AMBE=AM ⇒ tứ giác ABEM là hình bình hành.
Vậy tứ giác ABEM là hình bình hành.
c. Tứ giác MCEB là hình vuông
Khi MB = MC ⇒ ∆BMC là tam giác vuông cân
⇒^MBC=45∘=^ABC2⇒^ABC=2^MBC=2.45∘=90∘
⇒ ∆BAC là tam giác vuông cân
⇒ Tứ giác MCBE là hình vuông khi ∆BAC là tam giác vuông cân tại B.