Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao

Cho ∆ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE.

a. Chứng minh rằng BE = CD.

b. Chứng minh rằng \(\widehat {ABE} = \widehat {ACD}\).

 c. Gọi K là giao điểm của BE và CD. ∆KBC là tam giác gì? Vì sao?

Trả lời
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao  (ảnh 1)

a. Ta có AB = AD + DB, AC = AE + EC mà AB = AC (vì ∆ABC cân tại A)

AD = AE (giả thiết) DB = EC

Xét ∆BEC và ∆CDB có: DB = EC (chứng minh trên)

\(\widehat {ABC} = \widehat {ACB}\) (Vì ∆ABC cân tại A)

BC là cạnh chung

\( \Rightarrow \Delta BEC = \Delta CDB\left( {c.g.c} \right) \Rightarrow BE = CD\) (2 cạnh tương ứng)

b. Vì \(\Delta BEC = \Delta CDB\) (chứng minh trên) \( \Rightarrow \widehat {EBC} = \widehat {DCB}\) (2 góc tương ứng)

Ta có: \(\widehat {ABC} = \widehat {ABE} + \widehat {EBC}\), \(\widehat {ACB} = \widehat {ACD} + \widehat {DCB}\)

\(\widehat {ABC} = \widehat {ACB}\) (Vì \(\Delta ABC\)cân tại A)

\(\widehat {EBC} = \widehat {DCB}\) (chứng minh trên)

\( \Rightarrow \widehat {ABE} = \widehat {ACD}\) (điều phải chứng minh)

c. Xét ∆KBC có: \(\widehat {EBC} = \widehat {DCB}\) (chứng minh trên)

∆KBC là tam giác cân tại K.

Câu hỏi cùng chủ đề

Xem tất cả