Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh

Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. H, H' lần lượt là trực tâm của tam giá ABC, MNP. Điểm K đối xứng H qua H'. Khẳng định nào sau đây đúng?

A. \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} \)

B. \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HK} \)

C. \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow 0 \)

D. \(\overrightarrow {HM} + \overrightarrow {HN} + \overrightarrow {HP} = \overrightarrow {H'K} \)

Trả lời

Đáp án đúng là B

Cho tam giác ABC bất kì, gọi M, N, P lần lượt là trung điểm của các cạnh  (ảnh 1)

Xét tam giác ABC có M là trung điểm AB, N là trung điểm BC

Suy ra MN là đường trung bình

Do đó MN // AC, MN = \(\frac{1}{2}\)AC

Xét tam giác ABC có P là trung điểm AC, N là trung điểm BC

Suy ra PN là đường trung bình

Do đó PN // AB, PN = \(\frac{1}{2}\)AB

Xét tứ giác APNM có

AP // MN, AM // PN

Suy ra APNM là hình bình hành

Do đó \(\widehat {BAC} = \widehat {MNP}\)

Xét tam giác ABC và tam giác NPM có

\(\frac{{AB}}{{NP}} = \frac{{AC}}{{MN}} = 2\)

\(\widehat {BAC} = \widehat {MNP}\)

Suy ra (c.g.c) theo tỉ lệ là 2

Mà H, H’ là trực tâm tam giác ABC và tam giác NPM

Suy ra \(\frac{{CH}}{{MH'}} = 2\)

Hay CH = 2MH’                      (1)

Mặt khác CH AB, MH’ PN, AB // PN

Suy ra MH’ // CH                     (2)

Từ (1) và (2) suy ra \(\overrightarrow {CH} = 2\overrightarrow {H'M} \)

Ta có \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HH'} + \overrightarrow {H'A} + \overrightarrow {HH'} + \overrightarrow {H'B} + \overrightarrow {HC} \)

\( = 2\overrightarrow {HH'} + (\overrightarrow {H'A} + \overrightarrow {H'B} ) + \overrightarrow {HC} = 2\overrightarrow {HH'} + (\overrightarrow {H'A} + \overrightarrow {AM} + \overrightarrow {H'B} + \overrightarrow {BM} ) + \overrightarrow {HC} \)

\( = 2\overrightarrow {HH'} + (\overrightarrow {H'M} + \overrightarrow {H'M} ) + \overrightarrow {HC} = 2\overrightarrow {HH'} + 2\overrightarrow {H'M} + \overrightarrow {HC} \)

\( = 2\overrightarrow {HH'} + \overrightarrow {CH} + \overrightarrow {HC} = 2\overrightarrow {HH'} = \overrightarrow {HK} \)

Vậy ta chọn đáp án B.

Câu hỏi cùng chủ đề

Xem tất cả