Cho phương trình x^2 - (m + 2)x - 8 = 0 (m là tham số) a) Giải phương trình khi

Cho phương trình x2 – (m + 2)x – 8 = 0 (m là tham số)

a) Giải phương trình khi m = 0.

b) Tính giá trị của m để phương trình luôn có hai nghiệm x1; x2 thỏa mãn

x1(1 – x2) + x2(1 – x1) = 8.

Trả lời

a) Thay m = 0 vào phương trình ta có:

x2 – (0 + 2)x – 8 = 0

\( \Leftrightarrow \)x2 – 2x – 8 = 0

\(\Delta ' = 1 - 1.( - 8) = 9\)

Vậy phương trình có hai nghiệm là: \({x_1} = 1 - \sqrt 9 = - 2\); \({x_2} = 1 + \sqrt 9 = 4\).

b) Để phương trình đã cho có hai nghiệm phân biệt thì: \(\Delta > 0\)

\( \Leftrightarrow {(m + 2)^2} - 4.( - 8) > 0\)

\( \Leftrightarrow {(m + 2)^2} + 32 > 0\)(luôn đúng với \(\forall x \in \mathbb{R}\))

Áp dụng hệ thức Vi−ét ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 2\\{x_1}{x_2} = - 8\end{array} \right.\) (*)

Lại có: x1(1 – x2) + x2(1 – x1) = 8

\( \Leftrightarrow \) x1 – x1x2 + x2 – x1x2 = 8

\( \Leftrightarrow \) (x1 + x2) – 2x1x2 = 8

Thay (*) vào ta có: m + 2 – 2 . (−8) = 8

m + 2 + 16 = 8

m + 18 = 8

\( \Leftrightarrow \)m = −10

Vậy với m = −10 thì thỏa mãn yêu cầu bài toán.

Câu hỏi cùng chủ đề

Xem tất cả