Cho P = ((2x + 1) / (x căn bậc hai x - 1) - căn bậc hai x / (x + x căn bạc hai x + 1)
27
09/06/2024
Cho \(P = \left( {\frac{{2{\rm{x}} + 1}}{{x\sqrt x - 1}} - \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right)\left( {\frac{{1 + \sqrt {{x^3}} }}{{1 + \sqrt x }} - \sqrt x } \right)\)
a) Rút gọn biểu thức P.
b) Tìm x để P = 3.
Trả lời
a) Điều kiện xác định \[x \ge 0,x \ne 1\]
Ta có :
\(P = \left( {\frac{{2{\rm{x}} + 1}}{{x\sqrt x - 1}} - \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right)\left( {\frac{{1 + \sqrt {{x^3}} }}{{1 + \sqrt x }} - \sqrt x } \right)\)
Vậy với \[x \ge 0,x \ne 1\] thì \(P = \sqrt x - 1\).
b) Với \[x \ge 0,x \ne 1\] để P = 3 thì \(\sqrt x - 1 = 3\)
\( \Leftrightarrow \sqrt x = 4 \Leftrightarrow x = 16\) (thỏa mãn)
Vậy x = 16 thì P = 3.