Cho (O) và điểm I bên ngoài (O). Từ I vẽ một cát tuyến IAB với (O). Tiếp tuyến tại A và B cắt nhau tại M. AB cắt OM tại H. a) Chứng minh: MA^2 = MH.MO. b) Từ M kẻ ME vuông góc OI tại E cắt

Cho (O) và điểm I bên ngoài (O). Từ I vẽ một cát tuyến IAB với (O). Tiếp tuyến tại A và B cắt nhau tại M. AB cắt OM tại H.

a) Chứng minh: MA2 = MH.MO.

b) Từ M kẻ ME vuông góc OI tại E cắt (O) tại D và AB tại K. Chứng minh: IE.IO = IH.IK.

c) Chứng minh: ID là tiếp tuyến (O).

Trả lời

Lời giải

Media VietJack

a) Ta có MA, MB là hai tiếp tuyến của (O) cắt nhau tại M.

Suy ra MA = MB.

Khi đó M nằm trên đường trung trực của đoạn thẳng AB   (1)

Lại có OA = OB = R.

Suy ra O nằm trên đường trung trực của đoạn thẳng AB   (2)

Từ (1), (2), suy ra MO là đường trung trực của đoạn thẳng AB.

Do đó MO AB tại H và H là trung điểm AB.

Ta có MA là tiếp tuyến của (O).

Suy ra \(\widehat {AOM} = 90^\circ \).

Xét ∆AOM vuông tại A có AH là đường cao:

MA2 = MH.MO (hệ thức lượng trong tam giác vuông).

b) Xét ∆IEK và ∆IHO, có:

\(\widehat {IEK} = \widehat {IHO} = 90^\circ \).

\(\widehat I\) chung.

Do đó  (g.g).

Suy ra \(\frac{{IE}}{{IH}} = \frac{{IK}}{{IO}}\).

Do đó IE.IO = IH.IK.

c) Xét ∆OEM và ∆OHI, có:

\(\widehat {OEM} = \widehat {OHI} = 90^\circ \).

\(\widehat O\) chung.

Do đó  (g.g).

Suy ra \(\frac{{OE}}{{OH}} = \frac{{OM}}{{OI}}\).

Do đó OE.OI = OM.OH.

Xét ∆AOM vuông tại A có AH là đường cao:

OA2 = OH.OM (hệ thức lượng trong tam giác vuông).

Suy ra OE.OI = OA2.

Mà OA = OD = R.

Do đó OE.OI = OD2.

Xét ∆ODI và ∆OED, có:

\(\frac{{OD}}{{OE}} = \frac{{OI}}{{OD}}\) (OE.OI = OD2).

\(\widehat O\) chung.

Do đó  (c.g.c).

Suy ra \(\widehat {ODI} = \widehat {OED} = 90^\circ \).

Do đó OD DI.

Vậy ID là tiếp tuyến của (O).

Câu hỏi cùng chủ đề

Xem tất cả