Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh: a) OM song song O'N; b) Xác định vị trí của AM và AN để d

Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:

a) OM song song O'N;

b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.

Trả lời

Lời giải

Media VietJack

a) Xét ∆MAN vuông tại A có:

\(\widehat {AMN} + \widehat {ANM} = 90^\circ \) (1)

\(\widehat {MAO} + \widehat {NAO'} = 180^\circ - \widehat {MAN} = 180^\circ - 90^\circ = 90^\circ \) (2)

Lại có:

• ∆OMA cân tại O (OA = OM = R) \( \Rightarrow \widehat {OAM} = \widehat {OMA}\) (3)

• ∆O'NA cân tại O (O'A = O'N = R') \( \Rightarrow \widehat {O'AN} = \widehat {O'NA}\) (4)

Từ (1), (2), (3) và (4) suy ra:

\[\widehat {OMN} + \widehat {MNO'}\]

\[ = \left( {\widehat {OMA} + \widehat {AMN}} \right) + \left( {\widehat {ANM} + \widehat {O'NA}} \right)\]

\[ = \widehat {OMA} + \widehat {AMN} + \widehat {ANM} + \widehat {O'NA}\]

\[ = \widehat {OAM} + \widehat {AMN} + \widehat {ANM} + \widehat {O'AN}\]

\[ = \left( {\widehat {OAM} + \widehat {O'AN}} \right) + \left( {\widehat {AMN} + \widehat {ANM}} \right)\]

\[ = 90^\circ + 90^\circ = 180^\circ \]

Tứ giác OMNO' có \[\widehat {OMN} + \widehat {MNO'} = 180^\circ \] nên OM // O'N.

b) Từ O' kẻ O'H ^ MO. Khi đó:

\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2}\)

\( \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\)

Dấu=” xảy ra khi và chỉ khi O'H = O'O hay H ≡ O

Û O'O ^ MO hoặc O'O ^ NO'.

Vậy tứ giác MNO'O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) Û O'O ^ MO.

Câu hỏi cùng chủ đề

Xem tất cả