Cho (O; R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A vẽ 2 tiếp tuyến

Cho (O; R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A vẽ 2 tiếp tuyến AB, AC của đường tròn (O) (B, C là tiếp điểm). Vẽ dây BE của đường tròn (O) song song với AC; AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của đoạn DE.

a. Chứng minh 5 điểm A, B, C, O, M cùng thuộc 1 đường tròn

b. Chứng minh \(S{C^2}\)= SB.SD

c. 2 đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H. Chứng minh 3 điểm H, O, C thẳng hàng.

Trả lời
Cho (O; R) và điểm A nằm ngoài đường tròn với OA > 2R. Từ A vẽ 2 tiếp tuyến  (ảnh 1)

a. Ta có AB, AC là tiếp tuyến của (O) AB BO, AC CO

M là trung điểm DE OM DE

\( \Rightarrow \widehat {ABO} = \widehat {AMO} = \widehat {ACO} = 90^\circ \)

A, B, M, O, C đường tròn đường kính AO

b. Xét ∆SCD, ∆SCB có:

Chung \(\widehat S\)

\(\widehat {SCD} = \widehat {SBC}\)vì SC là tiếp tuyến của (O)

∆SAD \(\# \) ∆SBC (g.g)

\( \Rightarrow \frac{{SC}}{{SB}} = \frac{{SD}}{{SC}} \Rightarrow S{C^2} = SB.SD\)

c. Xét ∆SAD, ∆SAB có:

Chung \(\widehat S\)

\(\widehat {SAD} = \widehat {DEB} = \widehat {ABS}\) vì AB là tiếp tuyến của (O) và BE //AC

∆SAD \(\# \) ∆SBA (g.g)

\( \Rightarrow \frac{{SA}}{{SB}} = \frac{{SD}}{{SA}} \Rightarrow S{A^2} = SB.SD \Rightarrow S{A^2} = S{C^2} \Rightarrow SA = SC\)

Lại có AC // BE

\( \Rightarrow \frac{{BH}}{{SC}} = \frac{{VH}}{{VS}} = \frac{{HE}}{{AS}} \Rightarrow BH = HE\)

H là trung điểm BE OH BE (1)

Ta có BE // AC

\( \Rightarrow \widehat {EBC} = \widehat {ACB} = \widehat {CEB}\) ∆CBE cân tại C CO BE (2)

Từ (1), (2) C, O, H thẳng hàng.

Câu hỏi cùng chủ đề

Xem tất cả