a) Ta có A, E đối xứng qua OM Þ MA = ME, OA = OE
Þ OE = R nên E thuộc đường tròn (O)
Xét ∆MAO và ∆MEO
OM: cạnh chung
MA = ME (cmt)
OA = OE (cmt)
Þ ∆MAO = ∆MEO (c.c.c)
\( \Rightarrow \widehat {MEO} = \widehat {MAO} = 90^\circ \)
Suy ra ME là tiếp tuyến của đường tròn (O)
b) Ta có: A và E đối xứng qua OM suy ra MO là trung trực của AE
Mà I Î OM Þ IA = IE
Lại có MA là tiếp tuyến của (O)
\( \Rightarrow \widehat {MAI} = \widehat {IEA} = \widehat {IAE}\)
Suy ra AI là phân giác của \(\widehat {MAE}\)
Tương tự ta có EI là phân giác của \(\widehat {MEA}\)
Suy ra I là tâm đường tròn nội tiếp ∆AME
c) Ta có N là trung điểm của BE Þ ON ^ BE Þ OP ^ BE
Do AB là đường kính của (O) Þ AE ^ EB
Mà MO là trung trực của AE Þ MO // BE
Þ MO ^ OP vì OP ^ BE
Suy ra ΔOMP vuông tại O
Lại có OE ^ MP
Þ EM.EP = OE2 = R2
\( \Rightarrow {S_{OMP}} = \frac{1}{2}OE\,.\,MP = \frac{1}{2}R\,.\,\left( {ME + EP} \right) \ge \frac{1}{2}R\,.\,\sqrt {ME\,.\,EP} = {R^2}\)
Dấu “=” xảy ra khi ME = EP = R
Þ ΔMEO vuông cân tại E
\( \Rightarrow OM = R\sqrt 2 = OA\sqrt 2 \Rightarrow MA = R\)
d) Gọi QD ∩ AB = F, AE ∩ BP = G
Ta có OP // AE (^ BE), O là trung điểm AB
Suy ra OP là đường trung bình ΔABG
Suy ra P là trung điểm của PG hay PG = PB
Ta có BE ∩ AM = C
Tương tự ta có M là trung điểm của AC hay MA = MC
Lại có QF // AC
\( \Rightarrow \frac{{QD}}{{MC}} = \frac{{OD}}{{OM}} = \frac{{DF}}{{MA}}\)
Þ QD = DF Þ D là trung điểm của QF
Ta có QF // BG (^ AB)
\( \Rightarrow \frac{{AF}}{{AB}} = \frac{{QF}}{{GB}} = \frac{{2DF}}{{2BP}} = \frac{{DF}}{{BP}}\)
Lại có \(\widehat {AFD} = \widehat {ABP} = 90^\circ \)
Suy ra ΔAFD ᔕ ΔABP (c.g.c)
\( \Rightarrow \widehat {DAF} = \widehat {PAB}\)
Suy ra A, D, P thẳng hàng.