Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp

Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB, MB cắt (O) tại Q và cắt CH tại N.

a) Chứng minh MA2 = MQ.MB.

b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp.

c) Chứng minh: IN vuông góc CH.

Trả lời

Lời giải

Media VietJack

a) Do Q thuộc đường tròn tâm O đường kính AB nên \(\widehat {AQB} = 90^\circ \).

Xét DAMB vuông tại A có AQ là đường cao, theo hệ thức lượng trong tam giác vuông ta có: MA2 = MQ.MB.

b) Do AM, CM là hai tiếp tuyến của (O) cắt nhau tại M nên MA = MC (tính chất hai tiếp tuyến cắt nhau)

Suy ra M nằm trên đường trung trực của AC.

Lại có OA = OC (cùng bằng bán kính đường tròn (O)) nên O cũng nằm trên đường trung trực của AC.

Do đó OM là đường trung trực của AC nên OM AC

Xét tứ giác AIQM có: \(\widehat {AIM} = 90^\circ \)\(\widehat {AQM} = 90^\circ \)

Mà hai góc này cùng nhìn cạnh AM dưới một góc bằng 90°

Do đó tứ giác AIQM nội tiếp đường tròn.

c) Tứ giác AIQM nội tiếp nên \(\widehat {MAI} + \widehat {MQI} = 180^\circ \)

Lại có \(\widehat {NQI} + \widehat {MQI} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {MAI} = \widehat {NQI}\).

Ta có: AM AB, CH AB nên AM // CH

Do đó \(\widehat {MAI} = \widehat {MAC} = \widehat {ACH}\) (hai góc so le trong)

Suy ra \(\widehat {NQI} = \widehat {ACH}\) hay \(\widehat {NQI} = \widehat {NCI}\)

Mà hai góc này cùng nhìn cạnh IN dưới một góc bằng nhau

Do đó tứ giác NIQC nội tiếp

Suy ra \(\widehat {CIN} = \widehat {CQN}\) (hai góc nội tiếp chắn cung CN)

Lại có \(\widehat {CQN} = \widehat {CQB} = \widehat {CAB}\) (hai góc nội tiếp cùng chắn cung CB của đường tròn (O)).

Do đó \(\widehat {CIN} = \widehat {CAB}\)

Mà hai góc này ở vị trí đồng vị nên IN // AB

Do CH AB và IN // AB nên IN CH.

Câu hỏi cùng chủ đề

Xem tất cả