Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm

Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.

Trả lời
Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm  (ảnh 1)

Từ O kẻ OH vuông góc với CD. Nối O với B, OB cắt AC tại K

Suy ra OB AC

Vì tam giác ACD nội tiếp (O) đường kính AD

Nên \(\widehat {ACD} = 90^\circ \)

Xét tứ giác OHCK có \(\widehat {OKC} = \widehat {KCH} = \widehat {OHC} = 90^\circ \)

Suy ra OHCK là hình chữ nhật

Do đó OK = CH = \(\frac{1}{2}\)CD = 3, OH = CK = \(\sqrt {O{C^2} - O{K^2}} = \sqrt {{R^2} - 9} \)        (1)

Xét tam giác BCK vuông ở K có

CK = \(\sqrt {B{C^2} - B{K^2}} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \)                                             (2)

Từ (1) và (2) ta có

\(\sqrt {{R^2} - 9} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \)

\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {20 - {R^2} + 6{\rm{R}} - 9} \)

\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {11 - {R^2} + 6{\rm{R}}} \)

\({R^2} - 9 = 11 - {R^2} + 6{\rm{R}}\)

2R2 – 6R – 20 = 0

\(\left[ \begin{array}{l}R = 5\\R = - 2\end{array} \right.\)

Vậy bán kính đường tròn là 5 cm.

Câu hỏi cùng chủ đề

Xem tất cả