Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn

Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.

a) Tính \(\widehat {COD}.\)

b) Tứ giác OIMK là hình gì?

c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.

d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Trả lời
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn (ảnh 1)

a) Vì AC và CM là tiếp tuyến cắt nhau tại C của (O) nên CO là tia phân giác của góc AOM.

Tương tự OD là tia phân giác của góc BOM.

\(\widehat {MOA} + \widehat {MOB} = 180^\circ \) OC OD \(\widehat {COD} = 90^\circ \)

b) Vì CM, CA là tiếp tuyến của (O) nên OI AM hay \(\widehat {OAM} = 90^\circ \)

Tương tự OD MB suy ra \(\widehat {OKM} = 90^\circ \)

Mà AB là đường kính của (O) nên AM BM hay \(\widehat {IMK} = 90^\circ \)

Ta có: \(\widehat {OAM} = \widehat {OKM} = \widehat {IMK} = 90^\circ \)

Do đó tứ giác OIMK là hình chữ nhật.

c) Ta có CM, CA là tiếp tuyến của (O) nên CA = CM

Tương tự DM = DB.

Mà OC OD, OM CD suy ra MC.MD = OM2 = R2 hay AC.BD = R2

AC.BD không đổi khi C di chuyển trên Ax.

d) Gọi E là trung điểm của CD.

OE là đường trung bình của hình thang ABDC.

EO // AC EO AB

Mà ∆COD vuông tại O (do \(\widehat {COD} = 90^\circ \))

(E, EO) là đường tròn đường kính CD

AB là tiếp tuyến của đường tròn đường kính CD vì EO AB

Câu hỏi cùng chủ đề

Xem tất cả