Cho N = 2x - 10/x^2 - 7x + 10 - 2x/x^2 - 4 + 1/2 - x. Tìm giá trị của x để N có giá trị xác định.
Cho \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\). Tìm giá trị của x để N có giá trị xác định.
Lời giải
ĐKXĐ:
\(\left\{ \begin{array}{l}{x^2} - 7x + 10 \ne 0\\{x^2} - 4 \ne 0\\2 - x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 2} \right)\left( {x - 5} \right) \ne 0\\\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\x - 2 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 2;\;x \ne 5\\x \ne 2;\;x \ne - 2\\x \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne - 2\\x \ne 5\end{array} \right.\)
Vậy x Î (–¥; −2) È (−2; 2) È (2; 5) È (5; +¥) thì N có giá trị xác định.