Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Lời giải
Gọi G là trọng tâm của tam giác MPR.
Suy ra \[\overrightarrow {GM} + \overrightarrow {GP} + \overrightarrow {GR} = \vec 0\].
Ta cần chứng minh G cũng là trọng tâm của tam giác NQS.
Tức là, ta cần chứng minh \[\overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} = \vec 0\].
Ta có \[2\left( {\overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} } \right) = 2\overrightarrow {GN} + 2\overrightarrow {GQ} + 2\overrightarrow {GS} \] (N, Q, S là trung điểm BC, DE, FA)
\( = \left( {\overrightarrow {GB} + \overrightarrow {GC} } \right) + \left( {\overrightarrow {GD} + \overrightarrow {GE} } \right) + \left( {\overrightarrow {GF} + \overrightarrow {GA} } \right)\)
\( = \left( {\overrightarrow {GA} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {GC} + \overrightarrow {GD} } \right) + \left( {\overrightarrow {GE} + \overrightarrow {GF} } \right)\) (M, P, R là trung điểm AB, CD, EF)
\[ = 2\overrightarrow {GM} + 2\overrightarrow {GP} + 2\overrightarrow {GR} \]
\[ = 2\left( {\overrightarrow {GM} + \overrightarrow {GP} + \overrightarrow {GR} } \right) = 2.\vec 0 = \vec 0\].
Do đó \[\overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} = \vec 0\].
Suy ra G cũng là trọng tâm của tam giác NQS.
Vậy hai tam giác MPR và NQS có cùng trọng tâm.