Cho hs: y = x^4 + 2mx^2 + m^2 + m, (1). ( m là tham số)
Cho hs: y = x4 + 2mx2 + m2 + m, (1). ( m là tham số)
Xác định m để hs (1) có 3 cực trị, đồng thời các điểm cực trị của đồ thị tạo thành 1 tam giác có góc bằng 120 độ.
Cho hs: y = x4 + 2mx2 + m2 + m, (1). ( m là tham số)
Xác định m để hs (1) có 3 cực trị, đồng thời các điểm cực trị của đồ thị tạo thành 1 tam giác có góc bằng 120 độ.
Ta có:
y′ = 4x3 + 4mx = 4x(x2 + m)
Hàm số (1) có 3 cực trị khi và chỉ khi phương trình y′ = 0 có đúng 3 nghiệm phân biệt. Điều này tương đương với:
m < 0, (2)
Với điều kiện (2), đồ thị hàm số có 3 điểm cực trị là :
A(0;m2+m),B(−√−m;m),C(√−m;m)
Dễ thấy tam giác ABC là tam giác cân tại A. Do đó ˆA=120°. Từ đó suy ra . Yêu cầu của bài toán tương đương với
thỏa mãn (2)(2) nên đó là đáp án của bài toán