Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và góc ABC

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).

A. \[a\sqrt 3 \]

B. \(2{\rm{a}}\sqrt 5 \)

C. \[{\rm{a}}\sqrt 5 \]

D. \[{\rm{a}}\sqrt 2 \].

Trả lời

Đáp án đúng là: B

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và góc ABC (ảnh 1)

Gọi H, K là chân đường cao hạ từ A, D xuống BC

Khi đó tam giác ABH vuông tại H

\(\widehat {ABC} = 45^\circ \)

Suy ra tam giác ABH vuông cân tại H

Do đó AH = BH = 2a

Vì hình thang ABCD cân

Nên AB = CD, \(\widehat {ABC} = \widehat {DCB}\), BD = AC

Xét tam giác ABH và tam giác DCK có

\(\widehat {AHB} = \widehat {DKC}\left( { = 90^\circ } \right)\)

AB = CD

\(\widehat {ABC} = \widehat {DCB}\)

Suy ra ∆ABH = ∆DCK (cạnh huyền – góc nhọn)

Do đó CK = BH = 2a

Ta có CH = AD + CK = 2a + 2a = 4a

Xét tam giac AHC vuông tại H có

AC2 = AH2 + CH2

Suy ra \[{\rm{AC = }}\sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {4{\rm{a}}} \right)}^2}} = 2{\rm{a}}\sqrt 5 \]

Ta có:

\(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DA} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {CB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = AC = 2{\rm{a}}\sqrt 5 \)

Vậy ta chọn đáp án B.

Câu hỏi cùng chủ đề

Xem tất cả