Cho hình thang cân ABCD có AB // CD, AB < CD. Gọi M, N lần lượt là trung điểm của AB, CD và T là giao điểm của AC và BD (Hình 30). Chứng minh: a) ;

Cho hình thang cân ABCD có AB // CD, AB < CD. Gọi M, N lần lượt là trung điểm của AB, CD và T là giao điểm của AC và BD (Hình 30).

Chứng minh:

a) TAD^=TBC^,TDA^=TCB^;

Cho hình thang cân ABCD có AB // CD, AB < CD. Gọi M, N lần lượt là trung điểm của AB, CD và T là giao điểm của AC và BD (Hình 30). Chứng minh: a)  ; (ảnh 1)

Trả lời

a) Do ABCD là hình thang cân nên AC = BD và AD = BC (tính chất hình thang cân).

Xét ΔADC và ΔBCD có:

AD = BC; AC = BD; DC là cạnh chung

Do đó ΔADC = ΔBCD (c.c.c)

Suy ra CAD^=DBC^ (hai góc tương ứng)

Hay TAD^=TBC^.

Chứng minh tương tự ta cũng có: ΔABD = ΔBAC (c.c.c)

Suy ra BDA^=ACB^ (hai góc tương ứng)

Hay TDA^=TCB^.

Câu hỏi cùng chủ đề

Xem tất cả