Cho hình chữ nhật ABCD tâm O, AB = 12a, AD = 5a. Tính |vecto AD - vecto AO|

Cho hình chữ nhật ABCD tâm O, AB = 12a, AD = 5a. Tính \(\left| {\overrightarrow {AD} - \overrightarrow {AO} } \right|\).

Trả lời

Ta có: \(\overrightarrow {AD} = \overrightarrow {AO} + \overrightarrow {OD} \)

Suy ra: \(\overrightarrow {AD} - \overrightarrow {AO} = \overrightarrow {OD} \)

\(\left| {\overrightarrow {OD} } \right| = \frac{1}{2}\left| {\overrightarrow {BD} } \right|\)

Ta có ABCD là hình chữ nhật có:

BD2 = AB2 + AD2 = (12a)2 + (5a)2 = 169a2

Suy ra: BD = 13a

OD = \(\frac{{13}}{2}a\)

Vậy \(\left| {\overrightarrow {AD} - \overrightarrow {AO} } \right| = \frac{{13}}{2}a\).

Câu hỏi cùng chủ đề

Xem tất cả