Cho hình chữ nhật ABCD. Gọi O là trung điểm của AC. Hạ OM vuông góc với BC tại M, ON vuông góc với BC tại N.

Cho hình chữ nhật ABCD. Gọi O là trung điểm của AC. Hạ OM vuông góc với BC tại M, ON vuông góc với BC tại N.

a) Chứng minh OA=12BD.

b) Chứng minh MN = OC.

c) Kẻ BK vuông góc với AC tại K, OM giao với BK tại H. Chứng minh CH vuông góc với MB.

Trả lời
Cho hình chữ nhật ABCD. Gọi O là trung điểm của AC. Hạ OM vuông góc với BC tại M, ON vuông góc với BC tại N. (ảnh 1)

(H.3.31). Vì ABCD là hình chữ nhật nên AC cắt BD tại O và OA = OB = OD.

OA=OB=12BD.

b) Tứ giác OMCN có M^=N^=C^=90° nên OMCN là hình chữ nhật ⇒ MN = OC.

c) Trong tam giác BOC có OM, BK là đường cao cắt nhau tại H nên H là trực tâm ⇒ CH ⊥ OB.

Câu hỏi cùng chủ đề

Xem tất cả