Cho hình chóp tứ giác S.ABCD. Gọi G, K lần lượt là trọng tâm của các tam giác SAB và SAD; M, N lần lượt là trung điểm của BC và CD. Chứng minh rằng GK // MN.

Cho hình chóp tứ giác S.ABCD. Gọi G, K lần lượt là trọng tâm của các tam giác SAB và SAD; M, N lần lượt là trung điểm của BC và CD. Chứng minh rằng GK // MN.

Trả lời
Cho hình chóp tứ giác S.ABCD. Gọi G, K lần lượt là trọng tâm của các tam giác SAB và SAD; M, N lần lượt là trung điểm của BC và CD. Chứng minh rằng GK // MN.   (ảnh 1)

Gọi P, Q lần lượt là trung điểm của AB và AD.

Vì G là trọng tâm của tam giác SAB nên SGSP=23.

Vì K là trọng tâm của tam giác SAD nên SKSQ=23.

Khi đó, ta có SGSP=SKSQ, suy ra GK // PQ. (1)

Vì PQ là đường trung bình của tam giác ABD nên PQ // BD;

MN là đường trung bình của tam giác BCD nên MN // BD.

Suy ra MN // PQ. (2)

Từ (1) và (2) suy ra GK // MN.

Câu hỏi cùng chủ đề

Xem tất cả