Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, các mặt bên tạo với đáy một góc 60°. Diện tích Smc

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, các mặt bên tạo với đáy một góc 60°. Diện tích Smc của mặt cầu ngoại tiếp hình chóp là

A. Smc=25πa23.

B. Smc=32πa23.

C. Smc=8πa23.

D. Smc=a212.

Trả lời

Chọn A

Trục của đường tròn ngoại tiếp đa giác đáy là SO. Mặt phẳng trung trực của SB cắt SO tại I, cắt SB tại K thì I là tâm mặt cầu ngoại tiếp hình chóp.

Gọi H là trung điểm BC thì SHO^=60o.

Xét tam giác vuông SHO, ta có tan60o=SOOHSO=a3.

 Từ đó suy ra SB=SO2+OB2=3a2+2a2=a5.

Ta có ΔSKIΔSOBg.g.

SKSO=SISBSI=SK.SBSOSI=a5.a52a3=5a23=5a36.

Vậy diện tích mặt cầu ngoại tiếp hình chóp Smc=4πR2=4π75a236=25πa23.

Câu hỏi cùng chủ đề

Xem tất cả