Gọi H là trung điểm của AB.
ΔSAB cân tại S nên SH ^ AB.
Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SAB} \right) \supset SH \bot AB\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)
Gọi K là trung điểm CD Þ HK ^ CD
Lại có: \(\left\{ \begin{array}{l}CD \bot HK\\CD \bot SH\;\left( {SH \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SHK} \right) \Rightarrow CD \bot SK\)
\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SK \bot CD\\\left( {ABCD} \right) \supset HK \bot CD\end{array} \right.\)
\( \Rightarrow \left( {\widehat {\left( {SCD} \right);\;\left( {ABCD} \right)}} \right) = \left( {\widehat {SK;\;HK}} \right) = \widehat {SKH} = 60^\circ \)
Do SH ^ (ABCD) Þ SH ^ HK Þ ∆SHK vuông tại H.
Ta có: HK = AB = a
\( \Rightarrow SH = HK\,.\,\tan \widehat {SKH} = a\,.\,\tan 60^\circ = a\sqrt 3 \)
Vậy thể tích của khối chóp đã cho là
\({V_{S.ABCD}} = \frac{1}{3}SH\,.\,AB\,.\,AD = \frac{1}{3}\,.\,a\sqrt 3 \,.\,a\,.\,a = \frac{{{a^3}\sqrt 3 }}{3}\).