Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. a) Tìm các giao tuyến: d1 = (SAB) ∩ (SCD); d2 = (SCD) ∩ (MAB). b) Chứng minh d1 // d2.

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD.

a) Tìm các giao tuyến: d1 = (SAB) ∩ (SCD); d2 = (SCD) ∩ (MAB).

b) Chứng minh d1 // d2.

Trả lời
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. a) Tìm các giao tuyến: d1 = (SAB) ∩ (SCD); d2 = (SCD) ∩ (MAB). b) Chứng minh d1 // d2. (ảnh 1)

a) • S (SAD) và S (SBC) nên S (SAB) ∩ (SDC).

Mặt khác có AB (SAB), CD (SDC) và AB // CD (do ABCD là hình thang)

Suy ra (SAB)(SCD) = d1 với d1 là đường thẳng đi qua Sd1 // AB // CD.

Ta có M SD, mà SD (SCD) nên M (SCD)

Lại có M (MAB)

Suy ra (SCD) ∩ (MAB) = M

Mặt khác có AB (MAB), CD (SCD)AB // CD

Suy ra (SCD)(MAB) = d2 với d2 là đường thẳng đi qua Md2 // AB // CD.

b) Theo câu a, ta có d1 // AB // CDd2 // AB // CD

Suy ra d1 // d2.