Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H

Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.

Trả lời
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H (ảnh 1)

Ta có:

AH BD, CK BD AH // CK (1)

∆ABH và ∆CDK có:

\(\widehat {AHB} = \widehat {CKD}\) (= 90°)

\(\widehat {ABH} = \widehat {CDK}\) (2 góc so le trong)

AB = CD (tính chất hình bình hành)

∆ABH = ∆CDK (cạnh huyền – góc nhọn)

AH = CK (2)

Từ (1), (2) tứ giác AHCK là hình bình hành.      \[\]

Câu hỏi cùng chủ đề

Xem tất cả