Cho hình bình hành ABCD có tâm O. M là một điểm bất kì trong mặt phảng.CMR

Cho hình bình hành ABCD có tâm O. M là một điểm bất kì trong mặt phảng.CMR:

a) \[\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{ OD}}} {\rm{ + }}\overrightarrow {{\rm{OC}}} = \overrightarrow {AC} \]

b) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} = \overrightarrow {OD} \]

c) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{ OB}}} = \overrightarrow {MO} - \overrightarrow {MB} \]

Trả lời

a) \[\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{ OD}}} {\rm{ + }}\overrightarrow {{\rm{OC}}} \]

\[{\rm{ = }}\overrightarrow {{\rm{AB}}} {\rm{ + (}}\overrightarrow {{\rm{OC}}} {\rm{ - }}\overrightarrow {{\rm{OB}}} {\rm{)}}\](quy tắc trừ hai vec tơ)

\[{\rm{ = }}\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ = }}\overrightarrow {{\rm{AC}}} \]

b) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} \] (quy tắc hình bình hành)

\[{\rm{ = }}\overrightarrow {{\rm{BD}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} {\rm{ = }}\overrightarrow {{\rm{OD}}} \]

c) \[\overrightarrow {{\rm{BA}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{ OB}}} \]

\[{\rm{ = }}\overrightarrow {{\rm{BD}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} {\rm{ = }}\overrightarrow {{\rm{OD}}} {\rm{ = }}\overrightarrow {{\rm{BO}}} {\rm{ = }}\overrightarrow {{\rm{MO}}} {\rm{ - }}\overrightarrow {{\rm{MB}}} \]

Cho hình bình hành ABCD có tâm O. M là một điểm bất kì trong mặt phảng.CMR  (ảnh 1)

Câu hỏi cùng chủ đề

Xem tất cả