Cho hình bình hành ABCD có AB = 2BC. Gọi E và F theo thứ tự là trung điểm của AB, CD.

Cho hình bình hành ABCD có AB = 2BC. Gọi E và F theo thứ tự là trung điểm của AB, CD.

a) Chứng minh DEBF là hình bình hành.

b) Chứng minh ADFE là hình thoi.

c) Gọi M là giao điểm của DE và AF, N là giao điểm của CE và BF. Chứng minh EMFN là hình chữ nhật.

Trả lời

Media VietJack

a) Ta có: AB = DC (tính chất hình bình hành) mà E, F lần lượt là trung điểm AB, CD

EB = DF và EB // DF

BEDF là hình bình hành

b) AE = DF(= 12  AB = 12  DC) và AE // DF

AEFD là hình bình hành

Mà AE = AD (= 12  AB)

AEFD là hình thoi

c) EBFD là hình bình hành  ED // BF EM // FN(1)

Chứng minh tương tự câu b  EBCF là hình thoi

Và AEFD, EBCF là hình thoi

EM = FN và FN = NB mà ED = BF ME = FN(2)

Từ (1) và (2) suy ra EMFN là hình bình hành mà   EMF^ = 90°(AEFD là hình thoi)

EMFN là hình chữ nhật.

Câu hỏi cùng chủ đề

Xem tất cả