Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)^2 , với mọi x thuộc R. Số điểm cực tiểu
Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , ∀ x ∈ R. Số điểm cực tiểu của hàm số đã cho là
A. 2;
B. 0;
C. 1;
D. 3.
Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , ∀ x ∈ R. Số điểm cực tiểu của hàm số đã cho là
A. 2;
B. 0;
C. 1;
D. 3.
Đáp án đúng là C
Ta có:
f’(x) = 0 ⇔ x(x − 1)2 = 0 ⇔ \(\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)
Ta xét dấu của f’ (x)
Ta thấy đạo hàm đổi dấu đúng 1 lần nên hàm số đã cho có đúng 1 cực trị
Vậy ta chọn đáp án C.