Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)^2 , với mọi x thuộc R. Số điểm cực tiểu

Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , x R. Số điểm cực tiểu của hàm số đã cho là

A. 2;

B. 0;

C. 1;

D. 3.

Trả lời

Đáp án đúng là C

Ta có:

f’(x) = 0 x(x − 1)2 = 0 \(\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Ta xét dấu của f’ (x)

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)^2 , với mọi x thuộc R. Số điểm cực tiểu  (ảnh 1)

Ta thấy đạo hàm đổi dấu đúng 1 lần nên hàm số đã cho có đúng 1 cực trị

Vậy ta chọn đáp án C.

Câu hỏi cùng chủ đề

Xem tất cả