Cho hàm số bậc nhất y = (m - 2)x + m + 1 (m là tham số) a) Với giá trị nào

Cho hàm số bậc nhất y = (m – 2)x + m + 1 (m là tham số)

a) Với giá trị nào của m thì hàm số y là hàm số đồng biến?

b) Tìm giá trị của m để đồ thị hàm số đi qua điểm M(2; 6).

c) Đồ thị hàm số cắt trục hoành tại A, cắt trục tung tại B (A và B không trùng với gốc tọa độ O). Gọi H là chân đường cao hạ từ O của tam giác OAB. Xác định giá trị của m, biết \(OH = \sqrt 2 \).

Trả lời

a) Hàm số đồng biến khi m – 2 > 0

Hay m > 2

b) Đồ thị hàm số đi qua điểm M(2; 6)

6 = 2(m – 2) + m + 1

6 = 3m – 3

9 = 3m

m = 3

c) Ta có

Cho hàm số bậc nhất y = (m - 2)x + m + 1 (m là tham số) a) Với giá trị nào (ảnh 1)

Đồ thị hàm số cắt trục hoành tại A, cắt trục tung tại B (A và B không trùng với gốc tọa độ O) nên đồ thị hàm số đã cho không đi qua gốc tọa độ và không song song với hai trục

Suy ra m – 2 ≠ 0 và m + 1 ≠ 0

Hay m ≠ 2 và m ≠ – 1

Khi đó \[{\rm{A}}\left( {\frac{{m + 1}}{{m - 2}};0} \right)\] và B(0; m + 1)

Suy ra \(OA = \left| {\frac{{m + 1}}{{m - 2}}} \right|\)\(OB = \left| {m + 1} \right|\)

Xét tam giác AOB vuông tại O có OH AB

Suy ra \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\) (hệ thức lượng trong tam giác vuông)

Hay \(\frac{1}{{O{H^2}}} = \frac{{{{\left( {m - 2} \right)}^2}}}{{{{\left( {m + 1} \right)}^2}}} + \frac{1}{{{{\left( {m + 1} \right)}^2}}}\)

\(\frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} = \frac{{{m^2} - 4m + 5}}{{{{\left( {m + 1} \right)}^2}}}\)

(m + 1)2 = 2(m2 – 4m + 5)

m2 + 2m + 1 = 2m2 – 8m + 10

m2 – 10m + 9 = 0

(m – 1)(m – 9) = 0

\(\left[ \begin{array}{l}m = 1\\m = 9\end{array} \right.\)

Vậy m = 1 hoặc m = 9.

Câu hỏi cùng chủ đề

Xem tất cả