Cho hai hàm số: y = 2x – 3 và y = -1/(2x + 2) có đồ thị lần lượt là các đường thẳng (d1) và (d2)

Cho hai hàm số: y = 2x – 3 và \(y = \frac{{ - 1}}{2}x + 2\) có đồ thị lần lượt là các đường thẳng (d1) và (d2).

a) Vẽ trên cùng một hệ trục tọa độ các đường thẳng (d1) và (d2).

b) Tìm tọa độ giao điểm hai đường thẳng (d1) và (d2) bằng phép toán.

c) Tính góc tạo bởi đường thẳng (d1) và trục Ox.

Trả lời

a) Đồ thị hàm số y = 2x − 3 cắt trục hoành tại điểm có hoành độ là \(\frac{3}{2}\) và cắt trục tung tại điểm có tung độ là −3.

Vậy đồ thị trên đi qua hai điểm \(\left( {\frac{3}{2};\;0} \right)\)\(\left( {0;\; - 3} \right)\).

Đồ thị hàm số \(y = \frac{{ - 1}}{2}x + 2\) cắt trục hoành tại điểm có hoành độ là 4 và cắt trục tung tại điểm có tung độ là 2.

Vậy đồ thị trên đi qua hai điểm (4; 0) và (0; 2).

Ta có đồ thị hàm số của hai đường thẳng trên:

Cho hai hàm số: y = 2x – 3 và y = -1/(2x + 2) có đồ thị lần lượt là các đường thẳng (d1) và (d2) (ảnh 1)

b) C là giao điểm của hai đường thẳng trên nên hoành độ giao điểm của C là nghiệm của phương trình:

\(2x - 3 = \frac{{ - 1}}{2}x + 2 \Leftrightarrow x = 2\)

Þ y = 1

Vậy C(2; 1)

c) Ta có A(0; −3) và B(0; 2)

\(AC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 + 3} \right)}^2}} = 2\sqrt 5 \)

\(BC = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1 - 2} \right)}^2}} = \sqrt 5 \)

\(2\,.\,\left( { - \frac{1}{2}} \right) = - 1\) nên hai đường thẳng trên vuông góc với nhau.

Vậy diện tích tam giác ABC vuông tại C là:

\({S_{ABC}} = \frac{1}{2}AC\,.\,BC = \frac{1}{2}\,.\,2\sqrt 5 \,.\,\sqrt 5 = 5\)

Câu hỏi cùng chủ đề

Xem tất cả