cho hai đường thẳng: y = x + 3 (d1), y = 3x + 7 (d2). a) Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy. b) Gọi giao điểm của đường thẳng (d1) và (d2) với trục Oy lần lượt l

cho hai đường thẳng: y = x + 3 (d1), y = 3x + 7 (d2).
a
) Vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy.
b
) Gọi giao điểm của đường thẳng (d1) và (d2) với trục Oy lần lượt là A và B. Tìm tọa độ trung điểm I của đoạn AB.
c
) Gọi J là giao điểm của hai đường thẳng (d1) và (d2). Chứng minh tam giác OIJ là tam giác vuông. Tính diện tích của tam giác đó.

Trả lời

Lời giải

a) +) y = x + 3 (d1)

Với x = 0 Þ y = 3. Suy ra (d1) đi qua điểm có tọa độ A(0; 3).

+) y = 3x + 7 (d2).

Với x = 0 Þ y = 7. Suy ra (d2) đi qua điểm có tọa độ B(0; 7).

+) Hoành độ giao điểm của hai đường thẳng (d1) và (d2) là nghiệm của phương trình:

x + 3 = 3x + 7

Û x = −2 Þ y = 1

Vậy giao điểm của hai đường thẳng (d1) và (d2) là J(−2; 1).

Media VietJack

b) I là trung điểm của đoạn thẳng AB nên ta có:

{xI=xA+xB2=0+02=0yI=yA+yB2=3+72=5 Þ I(0; 5)

c) Ta có:

OI=02+52=5;OJ=(2)2+12=5 (đvđd);

IJ=(2)2+(15)2=25 (đvđd).

Suy ra IJ2 + OJ2 = OI2.

Theo định lí Pytago đảo nên suy ra ∆OIJ là tam giác vuông tại J.

Vậy diện tích tam giác OIJ là:

SOIJ=12IJ.OJ=12.25.5=5 (đvdt).

Câu hỏi cùng chủ đề

Xem tất cả