• Vì A là giao điểm của (D1) với trục hoành nên hoành độ giao điểm của A là nghiệm của phương trình:
Khi đó, tọa độ của điểm A là A(– 4, 0).
=> OA = 8 (cm)
• Vì B là giao điểm của (D2) với trục hoành nên hoành độ giao điểm của A là nghiệm của phương trình:
– x + 2 = 0 Û x = 2
Khi đó, tọa độ của điểm B là B(2, 0).
=> OB = 2 (cm)
• Vì C là giao điểm của hai đường thẳng (D1) và (D2) nên hoành độ giao điểm của C là nghiệm của phương trình:
Khi đó, tọa độ của điểm C là C(0; 2).
=> OC = 2 (cm)
Xét khẳng định A.
Do đó
Vậy khẳng định A đúng.
Xét khẳng định B.
Ta có AB = 6 (cm).
Theo định lí Py-ta-go, ta có:
AC2 = OA2 + OC2 = 42 + 22 = 20
Theo định lí Py-ta-go, ta có:
BC2 = OB2 + OC2 = 22 + 22 = 8
Chu vi tam giác ABC là:
P∆ABC= AB + AC + BC = 6 + 4,47 + 2,83 = 13,3 (cm).
Vậy khẳng định B sai.
Xét khẳng định C.
Diện tích tam giác ABC là:
Vậy khẳng định C đúng.