Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm của OB, MN là dây

Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm của OB, MN là dây cung bất kì qua H. Vẽ dây AA' vuông góc với MN. Lấy I là trung điểm của MN, BI cắt AA' tại D. Chứng minh:

a) Tứ giác DMNB là hình bình hành.

b) D là trung điểm của AA'.

Trả lời
Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm của OB, MN là dây  (ảnh 1)

a) Nối OI ta có:

+ Xét tam giác OMN có

OM = ON (bán kính đường tròn)

Tam giác OMN cân (tam giác có hai cạnh bên bằng nhau là tam gíac cân)

MI = NI (đề bài)

OI là trung tuyến thuộc cạnh MN

OI vuông góc MN (trong tam giác cân trung tuyến thuộc cạnh đáy đồng thời là đường cao của tam giác cân)

Ta có: AA' vuông góc MN

OI vuông góc MN (cmt)

OI // AA'

Xét tam giác ABD có:

OA = OB (bán kính đường tròn)

OI // AD (chứng minh trên OI//AA')

BI = DI (đường thẳng // cạnh đáy và đi qua trung điểm của 1 cạnh bên thì cũng đi qua trung điểm của cạnh bên còn lại)

Mà MI = NI

DMNB là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)

b) Xét tam giác OBD có

HO = HB (đề bài)

BI = DI (chứng minh trên)

HI là đường trung bình của tam giác OBD.

HI // OD

Mà HI vuông góc AA'

OD vuông góc AA'

AD = A'D (Bán kính vuông góc với dây cung thì chia đôi dây cung tại điểm cắt nhau).

Câu hỏi cùng chủ đề

Xem tất cả