Cho đường tròn tâm O, bán kính R = 8 cm và một điểm A có khoảng cách OA = 16 cm. Một đường kính BC quay xung quanh tâm O (đường thẳng BC không đi qua A). Đường tròn ngoại tiếp tam giác ABC cắ
30
15/05/2024
Cho đường tròn tâm O, bán kính R = 8 cm và một điểm A có khoảng cách OA = 16 cm. Một đường kính BC quay xung quanh tâm O (đường thẳng BC không đi qua A). Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là D.
a) Chứng minh ∆OAB và ∆OCD đồng dạng.
b) Tính OD, suy ra D là điểm cố định khi đường kính BC quay xung quanh điểm O.
c) Giả sử AB cắt đường tròn (O) tại điểm thứ hai E và AC cắt đường tròn (O) tại điểm thứ hai F và gọi P là giao điểm của EF với OA. Chứng minh bốn điểm C, F, D, P cùng nằm trên một đường tròn. Có nhận xét gì về bốn điểm B, E, D, P?
Trả lời
Lời giải
a) Xét ∆OAB và ∆OCD, có:
\(\widehat {CBA} = \widehat {CDA}\) (2 góc nội tiếp cùng chắn của đường tròn ngoại tiếp tam giác ABC);
\(\widehat {AOB} = \widehat {COD}\) (đối đỉnh).
Do đó (g.g).
b) Ta có (chứng minh câu a).
Suy ra \(\frac{{OA}}{{OC}} = \frac{{OB}}{{OD}}\).
\( \Leftrightarrow \frac{{16}}{8} = \frac{8}{{OD}}\).
\( \Leftrightarrow OD = \frac{{8.8}}{{16}} = 4\) (cm).
Ta có \(OD = \frac{{OB.OC}}{{OA}} = \frac{{{R^2}}}{{OA}}\).
Mà R cố định và OA cố định.
Nên D là điểm cố định khi đường kính BC quay xung quanh điểm O.
c) Ta có tứ giác BEFC nội tiếp đường tròn (O).
Suy ra \(\widehat {EBC} = \widehat {EFA}\).
Mà \(\widehat {EBC} = \widehat {ADC}\) (chứng minh trên).
Do đó \(\widehat {ADC} = \widehat {EFA}\).
Vì vậy bốn điểm C, F, D, P cùng nằm trên một đường tròn.
Chứng minh tương tự, ta được bốn điểm B, E, D, P cùng nằm trên một đường tròn.