Cho đường tròn (O) và điểm I không nằm trên đường tròn. Qua điểm I kẻ 2 dây

Cho đường tròn (O) và điểm I không nằm trên đường tròn. Qua điểm I kẻ 2 dây cung AB và CD (A nằm giữa I và B, C nằm giữa I và D.

a) So sánh các cặp góc \(\widehat {ACI}\)\(\widehat {ABD}\), \(\widehat {CAI}\)\(\widehat {CDB\;}\).

b) Chứng minh các tam giác IAC và IDB đồng dạng.                                                                             

c) Chứng minh IA.IB = IC. ID.

Trả lời
Cho đường tròn (O) và điểm I không nằm trên đường tròn. Qua điểm I kẻ 2 dây  (ảnh 1)

a) So sánh \(\widehat {ACI}\)\(\widehat {ABD}\)

Ta có: \(\widehat {ACI} + \widehat {ACD} = 180^\circ \) (2 góc kề bù) (1)

Xét (O) có: \(\widehat {ABD}\) là góc nội tiếp chắn cung AD

\(\widehat {ACD}\) là góc nội tiếp chắn cung AD

Suy ra: \(\widehat {ABD} + \widehat {ABD} = \frac{1}{2}.360^\circ = 180^\circ \)(2)

Từ (1) và (2) suy ra: \(\widehat {ACI} = \widehat {ABD} = 180^\circ - \widehat {ACD}\)

* So sánh \(\widehat {CAI}\)\(\widehat {CDB\;}\)

Ta có: \(\widehat {CAI} + \widehat {BAC} = 180^\circ \) (2 góc kề bù) (1)

Xét (O) có: \(\widehat {BAC}\) là góc nội tiếp chắn cung AD

\(\widehat {CDB}\) là góc nội tiếp chắn cung AD

Suy ra: \(\widehat {BAC} + \widehat {CDB} = \frac{1}{2}.360^\circ = 180^\circ \)(2)

Từ (1) và (2) suy ra: \(\widehat {CAI} = \widehat {CDB} = 180^\circ - \widehat {BAC}\)

b) Xét hai tam giác ΔIAC và ΔIDB có:

\(\widehat A\)chung

\(\widehat {IAC} = \widehat {IDB}\)(câu a)

Suy ra: ΔIAC ΔIDB (g.g).

c) Theo câu b có ΔIAC ΔIDB.

Suy ra: \(\frac{{IA}}{{ID}} = \frac{{IC}}{{IB}}\) hay IA.IB = IC.ID (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả