Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao điểm của CO và AD là I. a) Chứng minh: CO ⊥

Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao điểm của CO và AD là I.

a) Chứng minh: CO AD.

b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE.CB = CI.CO.

c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi điểm C di chuyển trên Ax.

Trả lời

Lời giải

Media VietJack

a) Ta có CA, CD là hai tiếp tuyến của (O) cắt nhau tại C.

Suy ra CA = CD.

Khi đó C nằm trên đường trung trực của đoạn thẳng AD   (1)

Lại có OA = OD = R.

Suy ra O nằm trên đường trung trực của đoạn thẳng AD   (2)

Từ (1), (2), suy ra CO là đường trung trực của đoạn thẳng AD.

Do đó CO AD tại I.

b) Xét ∆CED và ∆CDB, có:

\(\widehat C\) chung.

\(\widehat {CDE} = \widehat {CBD}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).

Do đó  (g.g).

Suy ra \(\frac{{CE}}{{CD}} = \frac{{CD}}{{CB}}\).

Do đó CE.CB = CD2   (3)

Xét ∆CDO vuông tại D có DI là đường cao:

CD2 = CI.CO (hệ thức lượng trong tam giác vuông)    (4)

Từ (3), (4), suy ra CE.CB = CI.CO (điều phải chứng minh).

c) Ta có AH // OD (cùng vuông góc với CD) và DH // OA (cùng vuông góc với AC).

Suy ra tứ giác AHDO là hình bình hành.

Mà I là giao điểm của AD và HO.

Do đó I là trung điểm của HO.

Trên tia đối của tia AO, lấy điểm G sao cho A là trung điểm của GO.

Khi đó AI là đường trung bình của tam giác GHO.

Suy ra AI // GH.

Mà AI HO (chứng minh trên).

Do đó GH HO.

Suy ra \(\widehat {GHO} = 90^\circ \).

Vậy khi C di chuyển trên Ax thì trực tâm H của tam giác ACD di động trên đường tròn tâm A, bán kính AO cố định.

Câu hỏi cùng chủ đề

Xem tất cả