Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho

Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho AD > BD, D khác A và B. Kẻ OH vuông góc với AD tại H, tia OH cắt tiếp tuyến Ax của đường tròn (O) tại C.

a) Chứng minh H là trung điểm của AD và OH.OC = R².

b) Gọi E là giao điểm của BC và đưởng tròn (O). Chứng minh bốn điểm A, H, E, C cùng thuộc một đường tròn và CD là tiếp tuyến của đường tròn (O).

Trả lời
Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho  (ảnh 1)

a) Ta có OA = OD = R

ΔAOD cân tại O

Vì OH AD tại H (gt)

OH vừa là đường cao, trung tuyến và phân giác của ΔAOD

H là trung điểm AD

Áp dụng hệ thức lượng trong ΔACO vuông tại A có AH OC

OH.OC = OA2 = R2

Vậy H là trung điểm AD và OH.OC = R2
b) ΔEAB nội tiếp (O;R) có AB là đường kính 

ΔEAB vuông tại E

AE BC tại E

ΔACE vuông tại E

Gọi I là trung điểm AC

EI là trung tuyến ΔACE

EI = AI = CI = \(\frac{1}{2}\)AC

    HI là trung tuyến ΔACH vuông tại H

HI = \(\frac{1}{2}\)AC

AI = HI = EI = CI = \(\frac{1}{2}\)AC

A; H; E; C cùng thuộc đường tròn tâm I đường kính AC

Vì OH là phân giác của ΔAOD (câu a)

\(\widehat {DOC} = \widehat {AOC}\)

Xét ΔDOC và ΔAOC có:

OC là cạnh chung 

\(\widehat {DOC} = \widehat {AOC}\)

OD = OA = R    

ΔDOC = ΔAOC (c–g–c)

\(\widehat {CDO} = \widehat {CAO}\)= 90°

CD OD

CD là tiếp tuyến tại D của (O).

Câu hỏi cùng chủ đề

Xem tất cả