Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ mộ

Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.

a) Chứng minh OM = OP và tam giác NMP cân

b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I

c) Chứng minh AM . BN = R2

d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.

Trả lời

Lời giải

Media VietJack

a) Vì (d) và (d’) là tiếp tuyến của (O) tại A, B

Nên OA d, OB d’

Suy ra \(\widehat {OAM} = 90^\circ \), \(\widehat {OBP} = 90^\circ \)

Ta có đường tròn (O; R), đường kính AB

Nên OA = OB = R

Xét tam giác OAM và tam giác OBP có

\(\widehat {OAM} = \widehat {OBP}\left( { = 90^\circ } \right)\)

OA = OB

\(\widehat {MOA} = \widehat {POB}\) (hai góc đối đỉnh)

Do đó OAM = OBP (g.c.g)

Suy ra OM = OP (hai cạnh tương ứng)

Xét tam giác MNP có NO vừa là đường cao vừa là đường trung tuyến

Suy ra tam giác MNP cân tại N

b) Xét tam giác MNP cân tại N có NO là đường cao

Suy ra NO là tia phân giác của góc MNP

Suy ra \(\widehat {ONI} = \widehat {ONB}\)

Xét tam giác ONI và tam giác ONB có

\(\widehat {OIN} = \widehat {OBN}\left( { = 90^\circ } \right)\)

ON là cạnh chung

\(\widehat {ONI} = \widehat {ONB}\)(chứng minh trên)

Do đó ONI = ONB (cạnh huyền – góc nhọn)

Suy ra OI = OB (hai cạnh tương ứng)

Mà OB = R nên OI = R

Xét (O; R) có OI = R, OI MN

Suy ra MN là tiếp tuyến của (O) tại I

c) Xét (O) có MA , MI là hai tiếp tuyến cắt nhau tại M

Suy ra MA = MI

Xét (O) có NB , NI là hai tiếp tuyến cắt nhau tại N

Suy ra NB = NI

Vì tam giác OMN vuông tại O có OI MN

Nên IM . IN = OI2 = R2

Mà MA = MI, NB = NI (chứng minh trên)

Suy ra AM . BN = R2

d) Tứ giác ABNM có \(\widehat {MAB} = \widehat {ABN} = 90^\circ \)

Nên ABNM là hình thang vuông

Suy ra \({S_{ABNM}} = \frac{{(AM + BN).AB}}{2} = \frac{{\left( {AI + IN} \right).2{\rm{R}}}}{2} = MN.R\)

Kẻ MH vuông góc d’

Ta có tam giác MHN vuông tại H

Suy ra MN ≥ MH

Để diện tích tứ giác ABNM nhỏ nhất

MN nhỏ nhất

Mà MN ≥ MH (chứng minh trên)

Dấu “ = ” xảy ra khi M ≡ H

Vậy điểm M nằm trên đường thẳng song song AB cách AB một khoảng bằng R thì diện tích tứ giác ABNM nhỏ nhất.

Câu hỏi cùng chủ đề

Xem tất cả