Cho đường thẳng (d): y = (m - 3)x + 3m + 2. Tìm giá trị nguyên của m để
Cho đường thẳng (d): y = (m – 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.
Cho đường thẳng (d): y = (m – 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.
Phương trình hoành độ giao điểm của (d) và Ox là
(m – 3)x + 3m + 2 = 0
⇔ (m – 3)x = – 3m – 2
\( \Leftrightarrow x = \frac{{3m + 2}}{{3 - m}}\)
\( \Leftrightarrow x = \frac{{3m - 9 + 11}}{{3 - m}} = \frac{{ - 3(3 - m) + 11}}{{3 - m}} = - 3 + \frac{{11}}{{3 - m}}\)
Để x đạt giá trị nguyên thì \(\frac{{11}}{{3 - m}}\) nguyên
⇔ 11 ⋮ 3 – m
⇔ 3 – m ∈ Ư(11)
⇔ 3 – m ∈ {1; 11; – 1; – 11}
⇔ m ∈ {2; – 8; 4; 14}
Vậy m ∈ {2; – 8; 4; 14} thì (d) cắt trục hoành tại điểm có hoành độ nguyên.