Cho biểu thức P = 2x^2/x^2 - 1 + x/x + 1 - x/x - 1. a) Tìm x để biểu thức P có nghĩa. b) Rút gọn P. c) Tính P tại x = –3. d) Tìm giá trị nguyên của x để P có giá trị nguyên.
22
15/05/2024
Cho biểu thức \(P = \frac{{2{x^2}}}{{{x^2} - 1}} + \frac{x}{{x + 1}} - \frac{x}{{x - 1}}\).
a) Tìm x để biểu thức P có nghĩa.
b) Rút gọn P.
c) Tính P tại x = –3.
d) Tìm giá trị nguyên của x để P có giá trị nguyên.
Trả lời
Lời giải
a) ĐKXĐ: x2 – 1 ≠ 0 ⇔ (x – 1)(x + 1) ≠ 0 ⇔ x ≠ ±1.
Vậy x ≠ ±1 thì biểu thức P có nghĩa.
b) \(P = \frac{{2{x^2}}}{{{x^2} - 1}} + \frac{x}{{x + 1}} - \frac{x}{{x - 1}} = \frac{{2{x^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} + \frac{x}{{x + 1}} - \frac{x}{{x - 1}}\)
\( = \frac{{2{x^2} + x\left( {x - 1} \right) - x\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{2{x^2} + {x^2} - x - {x^2} - x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{2{x^2} - 2x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{2x\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{2x}}{{x + 1}}\).
c) Với x = –3, ta có: \(P = \frac{{2.\left( { - 3} \right)}}{{ - 3 + 1}} = 3\).
Vậy x = –3 thì P = 3.
d) Ta có \[P = \frac{{2x}}{{x + 1}} = \frac{{2\left( {x + 1} \right) - 2}}{{x + 1}} = 2 - \frac{2}{{x + 1}}\].
P nhận giá trị nguyên ⇔ 2 chia hết cho (x + 1).
Ta có Ư(2) ∈ {±1; ±2}.
Ta có bảng sau:
x + 1
|
–2
|
–1
|
1
|
2
|
x
|
–3
|
–2
|
0
|
1
|
So với điều kiện ở câu a), ta nhận x ∈ {–3; –2; 0}.
Vậy x ∈ {–3; –2; 0} thỏa mãn yêu cầu bài toán.