Cho biểu thức M = x^4 + 2/x^6 + 1 + x^2 - 1/x^4 - x^2 + 1 - x^2 + 3/x^4 + 4x^2 + 3. 1. Rút gọn M. 2. Tìm x để M ≥ 1. 3. Tìm GTLN của biểu thức M.

Cho biểu thức \(M = \frac{{{x^4} + 2}}{{{x^6} + 1}} + \frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}} - \frac{{{x^2} + 3}}{{{x^4} + 4{x^2} + 3}}\).

1. Rút gọn M.

2. Tìm x để M ≥ 1.

3. Tìm GTLN của biểu thức M.

Trả lời

Lời giải

1) \(M = \frac{{{x^4} + 2}}{{{x^6} + 1}} + \frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}} - \frac{{{x^2} + 3}}{{{x^4} + 4{x^2} + 3}}\)

\( = \frac{{{x^4} + 2}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}} + \frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}} - \frac{{{x^2} + 3}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 3} \right)}}\)

\( = \frac{{{x^4} + 2 + \left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}} - \frac{1}{{{x^2} + 1}}\)

\( = \frac{{{x^4} + 2 + \left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) - \left( {{x^4} - {x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}}\)

\( = \frac{{{x^4} + 2 + {x^4} - 1 - {x^4} + {x^2} - 1}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}} = \frac{{{x^4} + {x^2}}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}}\)

\( = \frac{{{x^2}\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^4} - {x^2} + 1} \right)}} = \frac{{{x^2}}}{{{x^4} - {x^2} + 1}}\).

2) M ≥ 1

\( \Rightarrow \frac{{{x^2}}}{{{x^4} - {x^2} + 1}} \ge 1\)

\( \Rightarrow {x^2} \ge {x^4} - {x^2} + 1\)

\( \Leftrightarrow {x^4} - 2{x^2} + 1 \le 0\)

\( \Leftrightarrow {\left( {{x^2} - 1} \right)^2} \le 0\)

Þ x2 − 1 = 0

Þ x = ±1.

3) \(M = \frac{{{x^2}}}{{{x^4} - {x^2} + 1}}\)

\[ \Leftrightarrow M\,.\,{x^4} - M\,.\,{x^2} + M = {x^2}\]

\( \Leftrightarrow M\,.\,{x^4} - \left( {M + 1} \right)\,.\,{x^2} + M = 0\) (*)

Để phương trình (*) có nghiệm thì:

\(\Delta = {\left( {M + 1} \right)^2} - 4{M^2} \ge 0\)

\( \Leftrightarrow {M^2} + 2M + 1 - 4{M^2} \ge 0\)

\( \Leftrightarrow 3{M^2} - 2M - 1 \le 0\)

\( \Leftrightarrow \left( {3M + 1} \right)\left( {M - 1} \right) \le 0\)

\( \Rightarrow - \frac{1}{3} \le M \le 1\).

Vậy GTLN của M bằng 1 khi và chỉ khi \( - \frac{1}{3} \le M \le 1\).

Câu hỏi cùng chủ đề

Xem tất cả