Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm. a) Chứng minh ∆HBA ᔕ ∆ABC. b) Tính BC, AH, HC. c) Chứng minh AH^2 = HB . HC.
22
19/05/2024
Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm.
a) Chứng minh ∆HBA ᔕ ∆ABC.
b) Tính BC, AH, HC.
c) Chứng minh AH2 = HB . HC.
Trả lời
Lời giải
a) Xét ∆HBA và ∆ABC có:
\[\widehat B\] chung
\(\widehat {AHB} = \widehat {BAC} = 90^\circ \)
Þ ∆HBA ᔕ ∆ABC (g.g).
b) Áp dụng định lí Py-ta-go với ∆ABC vuông tại A nên ta có:
BC2 = AB2 + AC2
Þ BC2 = 62 + 82 = 100
Þ BC = 10 cm
∆HBA ᔕ ∆ABC
\[ \Rightarrow \frac{{HA}}{{AC}} = \frac{{AB}}{{CB}} \Rightarrow \frac{{AH}}{8} = \frac{6}{{10}} \Rightarrow AH = 4,8\;cm\].
Áp dụng định lí Pytago vào ∆AHC vuông tại H nên ta có:
\[HC = \sqrt {A{C^2} - A{H^2}} = \sqrt {{8^2} - {{4,8}^2}} = 3,6\;(cm)\].
c) Xét ∆AHB và ∆CHA có:
\[\widehat {AHB} = \widehat {CHA} = 90^\circ \]
\[\widehat {BAH} = \widehat {ACH}\] (cùng phụ với \[\widehat {ABC}\])
Þ ∆AHB ᔕ ∆CHA (g.g)
\[ \Rightarrow \frac{{AH}}{{CH}} = \frac{{HB}}{{HA}} \Rightarrow A{H^2} = HB.HC\].