Cho ∆ABC vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M

Cho ∆ABC vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}\)BC.

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Trả lời
Cho ∆ABC vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M (ảnh 1)

a) Ta có D, E là hình chiếu của M trên AB, AC

DM AB và ME AC Mà AB AC.

ADME là hình chữ nhật.

b) Xét ΔABC có:

M là trung điểm BC và ME // AB (ADME là hình chữ nhật)

ME là đường trung bình của ΔABC E là trung điểm AC

M là trung điểm BC và MD // AC (ADME là hình chữ nhật)

MD là đường trung bình của ΔABC D là trung điểm AB

Ta có: E là trung điểm AC, D là trung điểm AB

DE là đường trung bình của ΔABC

DE = \(\frac{1}{2}\)BC.

c) Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM

DP là đường trung bình của ΔBAM.

DP // AM (1)

Chứng minh tương tự với ΔAMC EQ // AM (2)

Từ (1) và (2) DP // EQ Mà DE // PQ (cmt)

DPQE là hình bình hành

Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)

Ta có P, Q là trung điểm của BM và MC và M là trung điểm BC

M là trung điểm PQ

Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ

AM là đường trung bình của DPQE

AM đi qua trung điểm DE, gọi điểm đó là F

Từ đó AM là trục đối xứng của DPQE tức là đi qua O.

d) Để DPQE là hình chữ nhật thì 4 góc của hình phải bằng 90°

Ta xét ΔBAM nếu DPBM thì AMBM

Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao

ΔABC vuông cân tại A

AB = AC.

Câu hỏi cùng chủ đề

Xem tất cả